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ABSTRACT: The two-peptide lantibiotic haloduracin is
composed of two post-translationally modified polycyclic
peptides that synergistically act on Gram-positive bacteria.
We show here that Halα inhibits the transglycosylation
reaction catalyzed by PBP1b by binding in a 2:1 stoichiom-
etry to its substrate lipid II. Halβ and the mutant Halα-
E22Q were not able to inhibit this step in peptidoglycan
biosynthesis, but Halα with its leader peptide still attached
was a potent inhibitor. Combined with previous findings,
the data support a model in which a 1:2:2 lipid II:Halα:Halβ
complex inhibits cell wall biosynthesis and mediates pore
formation, resulting in loss of membrane potential and
potassium efflux.

Inhibition of peptidoglycan biosynthesis is a common mode of
action of many natural product antibiotics. Among the various

ways of disrupting cell wall biosynthesis, sequestration of lipid II
(Figure 1A) is particularly powerful. Lipid II is the substrate for
the polymerases that generate the oligosaccharide chains of
peptidoglycan. Bacterial resistance to compounds that bind to
lipid II, such as nisin,1 vancomycin,2 and ramoplanin,3�6 has
been slow to develop, possibly because in comparison with other
resistance mechanisms such as efflux pumps and enzyme muta-
tions, it is more challenging to change the structure of an
advanced intermediate that is biosynthesized in 10 steps.7,8

Several structurally diverse members of the lantibiotics have
been reported to bind to lipid II.1,9�13 Lantibiotics are riboso-
mally synthesized and post-translationally modified peptides
characterized by thioether cross-links.14 Two-peptide lanti-
biotics consist of two compounds that function synergistically
to kill a range of Gram-positive bacteria.15 In a recently
proposed model for their synergistic activity, the α-peptide
binds to lipid II in stoichiometric fashion, generating a binding
site for the β-peptide.12,16 A 1:1:1 trimeric complex is then
believed to form pores in the cell membrane, which results in
the efflux of potassium and disruption of the membrane
potential.12 In this work, we evaluated this model with the
two-peptide lantibiotic haloduracin and carried out structure
�activity studies with haloduracin analogues. We show that
the stoichiometry of binding lipid II by the α-peptide of
haloduracin is 1:2 (lipid II:Halα).

The two peptides that make up haloduracin are shown in
Figure 1B.17,18 Halα contains several overlapping rings, includ-
ing the B ring (residues 18�23) that is present in a variety of
lantibiotics (including mersacidin10 and lacticin 314719) and
has been proposed to be important for lipid II binding.20,21

Halβ has a more elongated structure and does not contain any
overlapping rings (Figure 1B). To evaluate binding to lipid II,
we used a previously reported in vitro assay that monitors the
catalytic activity of PBP1b from Escherichia coli.22 PBP1b uses
lipid II as a substrate for glycan polymerization. Halα inhibited
PBP1b-catalyzed peptidoglycan formation using 4 μM hepta-
prenyl lipid II 1 (Figure 1A) with a half-maximal inhibitory
concentration (IC50) of 9.6 ( 0.4 μM (Figure 2). In contrast,
Halβ did not inhibit lipid II polymerization at concentrations
up to 100 μM. We also tested a series of other post-transla-
tionally modified peptides as potential inhibitors of the polym-
erization process. The lantibiotics epilancin 15X,23 lactocin
S,24,25 and cinnamycin26,27 did not demonstrate any inhibitory
activity at concentrations up to 200 μM. Similarly, the S-linked
glycopeptide sublancin28 did not inhibit lipid II polymerization
at these levels. We therefore concentrated our further efforts on
haloduracin.

A Halα mutant in which Cys23 was mutated to Ala,29,30

thereby disrupting the B-ring structure, still inhibited lipid II
polymerization, albeit with a 5-fold increase in the IC50 value
(50.7 ( 1.7 μM) relative to wild-type (wt) Halα (Figure S1 in
the Supporting Information). Mutation of the highly conserved
Glu22 within the B ring to Gln abolished inhibition at concen-
trations up to 100 μM. However, a C-ring Cys27f Ala mutant
did inhibit polymerization, but in a less potent manner than wt
Halα (IC50 = 29.5 ( 3.5 μM; Figure S1). The B- and C-ring
mutants were previously evaluated for their antimicrobial activity
against Lactococcus lactis HP.29,30 The combination of wt Halα
andHalβ resulted in aminimum inhibitory concentration (MIC)
of 0.039 μM, whereas the use of wt Halβ with Halα-C23A or
Halα-C27A yielded MIC values of 0.39 and 1.56 μM, respec-
tively. It is not possible to compare directly the effects of these
mutations on the antimicrobial activity and in vitro inhibition of
lipid II polymerization because of different components that are
present in each assay, including the membrane of whole cells in
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the antimicrobial assay. Nevertheless, the relative effects can be
compared for each assay type. The larger deleterious effect on
antimicrobial activity of the C27A mutation compared to the
C23Amutation despite its higher affinity for lipid II suggests that
disruption of the C ring has an additional deleterious effect on the
interaction with Halβ compared with disruption of the B ring.

Conversely, the Halα-E22Q MIC of 1.56 μM when combined
with wt-Halβ30 was not expected given that the peptide did not
inhibit in vitro polymerization. In the context of themembrane of
whole cells and the presence of Halβ, the compound may regain
some of its binding activity. Binding is still very weak, however,
because the MIC of the combination treatment is only 4-fold
lower than that of Halβ by itself (6.25 μM).

The kinetics of the inhibition of the polymerization reaction
catalyzed by PBP1b were examined next with wt Halα. As shown
in Figure 3, the dependence of the reaction rate on the lipid II
concentration exhibits Michaelis�Menten-like kinetics. In the
presence of 6 μM Halα, the reaction was fully inhibited until
the lipid II concentration exceeded 3 μM. Similarly, at a Halα
concentration of 8 μM, the reaction was completely inhibited
until the lipid II concentration exceeded 4 μM. This type of
behavior is similar to the inhibition of this process by
ramoplanin31 and indicates that Halα forms a tight complex
with lipid II with a 2:1 stoichiometry (Halα:lipid II).32 This
stoichiometry is reminiscent of the 2:1 ratio of nisin to lipid II in
pores formed in bacterial membranes.33 The data do not allow a
precise determination of a KD for Halα binding to lipid II,34 but
the inhibition curves in Figure 3 imply a nanomolar binding
constant. Because previous work has demonstrated that like
other two-peptide lantibiotics,16 Halα and Halβ act in 1:1
stoichiometry,30 the data further suggest that haloduracin in-
hibits peptidoglycan formation and causes pore formation by
forming a lipid II:Halα:Halβ complex with 1:2:2 stoichiometry.

The Halα mutants used in this work were made using a
previously described in vitro reconstituted biosynthesis.17,29 In
this process, the lanthionine synthetase HalM1 carries out a
series of post-translational modifications on the HalA1 precursor
peptide that result in the thioether cross-links shown in
Figure 1B. The precursor peptide has an additional N-terminal
extension of 41 amino acids called the leader peptide that is
important for recognition by HalM1. In addition, the leader
peptides of lantibiotic precursor peptides are generally believed
to keep their products inactive while they are synthesized in the
cytoplasm.35�39 For haloduracin, the bifunctional protease/
transporter HalT is believed to remove the leader peptide. HalT
has not been investigated to date, but in a related system for the
lantibiotic lacticin 481, the dedicated protease domain of the

Figure 1. (A) Structures of lipid II and an analogue 1 used in this study
with a shortened prenyl chain. (B) Structures of Halα and Halβ. Shaded
circles indicate residues mutated in this study. Abu, 2-aminobutyric acid;
Dhb, dehydrobutyrine.

Figure 2. Inhibition of PBP1b-catalyzed formation of peptidoglycan
(PG) by Halα and Halβ. The lipid II concentration was 4 μM.

Figure 3. Kinetics of lipid II polymerization by PBP1b and inhibition
of this process by Halα.
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transporter LctT removes the leader peptide of modified LctA
precursor peptide and secretes the final product.37,40 Given the
common belief that lantibiotics with their leader peptides still
attached are inactive, we were surprised to find that Halα
containing its leader peptide (leader-Halα) appeared to have
antimicrobial activity against L. lactis HP when combined with
Halβ (Figure 4A). The activity is low relative to Halα without its
leader peptide attached, and antimicrobial activity of leader-Halα
was seen only in the presence of Halβ. We speculated that the
indicator strain may secrete a protease that removes all or part of
the leader peptide from a small subset of Halα molecules,
resulting in the observed activity. Alternatively, Halα with its
leader peptide attached may still engage with lipid II. To test the
latter explanation, the polymerization assay was conducted in the
presence of leader-Halα. Indeed, this peptide proved to be a
potent inhibitor of lipid II polymerization with an IC50 of 7.1 (
0.2 μM (with 4 μM lipid II; Figure 4B), similar to the activity of
wt-Halα. The weaker antimicrobial activity of leader-Halα with
wt Halβ relative to Halα combined with Halβ (Figure 4A) is

likely a consequence of the less optimal synergy between the two
peptides when the leader peptide is still attached to Halα.
Furthermore, the leader peptide of Halα is highly negatively
charged (four Glu, three Asp, one Arg, one Lys)17,18 with a
stretch of four negatively charged residues near the junction
between the leader peptide and the core peptide. These negative
charges are likely to significantly weaken the binding of leader-
Halα to lipid II in the context of a negatively charged membrane,
explaining why the antimicrobial activity in Figure 4A is weaker
than anticipated on the basis of the strong inhibition of the
polymerization process by leader-Halα.

In summary, this study has shown that Halα inhibits PBP1b by
binding to its substrate lipid II in 2:1 stoichiometry. Glu22 is
essential for this interaction, and the B and C rings are important
but not critical. Attachment of the leader peptide does not
prevent Halα from binding to lipid II, but because the leader is
removed during secretion, lipid II does not encounter leader-
Halα in the context of the producer strain. In combination with
previous studies, the results presented here suggest that halodur-
acin’s antimicrobial activity is achieved in 1:2:2 lipid II:Halα:
Halβ stoichiometry.
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